
FedDocs
D 208.14/2
NPS-55-89-02

NPS-55-89-02

' '

NAVAl POSTGRADUATE SCHOOl
Monterey , California

CONSTANT ACCESS SYSTEMS: A GENERAL
FRAMEWORK FOR GREEDY OPTIMIZATION ON

STOCHASTIC NETWORKS

MICHAEL P. BAILEY
II

MARCH 1989

Approved for public release; distribution is unlimited.

Prepared for:
Naval Postgraduate School
Monterey, CA 93943

D DJ...tf'V ~JIQ..I LlRB..ARY
W Y A "'' li 'ltA r) 1'1 ~-.: liiCIDOL
WOtJ JliHJ!;,' ,A..~..IFVl\lJI.A ~

NAVAL POSTGRADUATE SCHOOL,
MONTEREY, CALIFORNIA

Rear Admiral R. C. Austin
Superintendent

Hamson Shull
Provost

This report was prepared in conjunction with research conducted under
th Naval Postgraduate School Research Council Program.

Reproduction of all or part of this report is authorized.

This report was prepared by:

, ·-
REPORT DOCUMENTATION PAGE

............... ~..I r\I'<UA IHi-t'~\t~Y

~~V~~POSTGRADUATESCHOO!
REPORT SEC URITY CLA))IF1CAT Or·,

Un classified
, b RESTR CT ·,E MARl< rv") IY1"CCT'f I L..r\[:. 1 'vH ~-J~4J-51 01

SECURITY Ci..ASS IFICATION A u Tr" Q RIT Y 3 :> s- R C "'TIO~J A , A . AB- - , v ;. KE;:..op ·

Approved f or public r e l ease ; di s tribution is
DECLASS IFICAT ION I DOWNGRAD ING SC'1EDULE unlimited.

1 PERFORMING ORGMJ IZAT ION REPORT Nl.H.IIBER(S) 5 M ON TOR ING OR GA NI ZA TIO N REPOR T Nv 'v'BE."":S,

I NPS55-89-02
I I NAME OF PERFORMING ORGANIZATION 6o OFF ICE SYMBOL ?a NAME OF MON ITORING ORGAN IZA T O N

Naval Postgraduate School
(If appl1cable)

Naval Postgraduate School
55

f· ADDRESS (City, State, and ZIP Code) 7b ADDRESS (C1 ty. State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

I
. NAME OF FUNDING' SPONSORI~JG 8b OFF ICE SYMBOL 9 PROCUREMENT NS-R UMEr, T :DENT FICA TIOr, 1\. ~ VBE"
ORGANIZATION (If applicable)

O&MN, Naval Postgraduate Scnool 55Ba Direct Funding

. ADDRESS (City, State, and ZIP Code) 10 SOuRCE OF F .r-..ID NG \J ..Jr•/BER'

Monterey, CA 93943 PROGRAM PROJECT -ASK 1110Ri< J '., T
ELEMENT NO NO NO ACCESS G~ '.0

. TITLE (Include Secunty Classd1cat10n) Constant Access Systems: A General Framework for Greed y Optimi-
zation on Stochastic Net works.

. PERSONAL AUTHOR(S)
Michael P. Bailey

ta. TYPE OF REPORT
Technical

113b TIM E COV ERED
FROM TO

f 14 DATE OF REP~RT (Year,Month,Day) 1' 5 PAGE COur,-
March 19 9 38

p SUPPLEMENTARY NOTATION
this paper those of the author and do not reflec t the off i c ial The views expressed in are

policy or position of the Department of Defense or the u.s. Government.

COSAT I CODES 18 SUBJECT TERMS (Contmue on reverse If necessary and 1dent1fy by block numbE-r)

FIELD GROUP SUB-GRO UP Stochastic networks, stochastic optimization

ABSTRACT (Cont1nue on re verse If necessary and 1dent1 fy by block number)

We consider network optimization problems in which the weights of the ed ges are ran-
dom variables. We deve lop conditions on the combinatorial structure of the prob lem whi ch
guarantee that the objective function value is a first passage time in an appro priately
constructed Markov process. The arc weights must be exponentially distributed, t he
method of solution of the deterministic problem must be greedy in a general sens e, and
the accumulation of objective function value during the greedy procedure must oc cu r a t a
constant rate. We call these structures constant access systems after the third p r oper t y .
Examples of constant access systems include the shortest path system, time until dis con-
nection in a network of failing components, and some bottleneck optimization problems .
For each system, we give the distribut ion of the objective function, the distribut i on of
the solution of the problem, and the probability that a given arc is a member of t he
optimal solution. We also provide easily implement able formulae for the moments of these
quantities.

10 DISTRIBUTION I AVAILABILITY OF ABSTRACT

fXI UNCLASSIFIED/U NLIM ITED 0 SAME AS RPT 0 DTIC USERS

2U ABlTRA(J fEC~R I TY (LASS IFI(AT IO ">
nc ass1 1e

12a NAME OF RESPONSIBLE INDIVI DU AL
Michael P. Bailey

I.
10 FORM 1473, 84 MAR

22f4Hs)P6~~-(~6~~ge Area Code) Inc 05_5§~ s v \'S'-

83 A PR ed 1t 1on may be used unt tl exhausted

.:1.!1 other ed1 t 1ons are obsol et e
SECu R -v CLASS F (A ' 0 \

'Q' .._. c; Gove~nm nt P•tnt n-: - ".._ . · 966 606·2 4 3

UNCLASSI FlED

CONSTANT ACCESS SYSTEMS:
A GENERAL FRAMEWORK FOR GREEDY

OPTIMIZATION ON STOCHASTIC NETWORKS

by

l\1ichael Page Bailey

Department of Operations Research

U. S. Naval Postgraduate School

Monterey, California

0 l Q I 1\ .., I l;i L T ~~ }< l=t v

,.. .. -, .., , • ,., ' ' ~-~ 1 ~ r ~~ ll()()L

ABSTRACT

We consider network optimization problems in which the weights of the edges are random variables. We

develop conditions on the combinatorial structure of the problem which guarantee that the objective function value is

a fust passage time in an appropriately constructed Markov process. The arc weights must be exponentially

distributed, the method of solution of the deterministic problem must be greedy in a general sense, and the

accumulation of objective function value during the greedy procedure must occur at a constant rate. We call these

structures constant access systems after the third property. Examples of constant access systems include the shortest

path system, the longest path system , time until disconnection in a network of failing components, and some

bottleneck optimization problems. For each system, we give the distribution of the objective fun ction, the

distribution of the solution of the problem, and the probability that a given arc is a member of the optimal solution.

\Ve also provide easily implementable formulae for the moments of these quantities.

1.0 INTRODUCTION

In this paper, we unify a set of results concerning the performance of networks with random arc weights.

Finding the distributions of the shortest path, longest path, and maximum flow were provided in Kulkami [l 987],

Kulkarni and Adlakha[l986], and Kulkarni [1987], where each problem was considered on a network with

independent, exponentially distributed arc weights. In each case, a Markov process was constructed for which the

first passage time to a set of states was the optimal objective function value of the problem. Thus, the distribution,

moments, etc., of the optimal objective function value could be found using standard Markov process technique.

The same methodology was applied to the nonplanar maximum flow problem and to Prim's spanning tree

problem, neither attempt being successful. We could not construct a Markov process with ftrst passage time equal

to the objective function value for either problem, though these problems seem closely related to the problems for

.which the method was successful. This left the investigators with the problem of determining which characteristics

of these optimization problems was essential in order to ensure that a Markov process solution exists.

This paper provides a general framework for randomly weighted network optimization problems which have
I

I

!optimal objective function values are given by absorption times of some Markov process. The restrictions which

f escribe this class are that the method of solution is essentially greedy, and that the underlying combinatorial

rtructure have two properties which we call the constant access and interval properties. For any combinatorial

r
ptimization problem with these properties, we give the construction of the Markov process required. For each

)ystem, we give the distribution of the objective function, the distribution of the solution of the problem, and the

~obability that a given arc is a memb;r of the optimal solution. We also provide easily implementable formulae

for the moments of these quantities. All of these calculations exploit the uppertriangularity of the generator matrix

:>f the constructed Markov process.

Awareness of a general class of constant access systems allows us to consider other combinatorial optimization

~roblems and to determine if they may be extended to the randomly weighted case using Markov processes. By

Jinpointing the required properties for successful application of Markov processes to the objective function

r stribution problem, we can narrow the search for problems for which we expect success. Stated differently, we

1ave shown that the mechanism of transition in Markov processes is identical to the mechanism of access of the

~dy algorithm.

1

Let E be a set of elements, typically the edges of a graph, and let B be a set of strings made up of elements in

E. For each Y e B, let W(Y) be a random variable corresponding to the objective function value of Y. We are

interested in computing

F(Y , t) = P[W(Y) ~ t, W(Y) ~ W(Y ') for all Y' e B],

the probability that Y is the minimum weight element of B and its value does not exceed t. The marginals ofF

may be used to fmd the distribution of the optimal objective function value, criticality indices for each arc, and other

interesting network performance measures. In Dijkstra's shortest path algorithm (forward looking version), B is the

set of states which have the destination permanently labeled. If Y is one such state, F(Y, t) is the probability that Y

is the terminating state of the algorithm and the shortest path has length not exceeding t. If we aggregate all of the

states which give the same shortest path, we can sum the probabilities to find the probability that a given path is

shortest and its length does not exceed t, and we can lett~ oo to find the probability that a given path is shortest.

In this work, we will identify a class of problems for which a stochastic process {X(t), t ~ 0} may be

constructed such that each Y e B is an absorbing state of { X(t), t ~ 0}. The fundamental property of { X(t)} is

that F(Y, t) is the distribution of the time of {X(t)} 's first passage to Y. Characteristics of this class of

combinatorial problems include optimality of the greedy algorithm for the underlying deterministic combinatorial

problem, as well as tw~ properties called the interval and constant access properties. The stochastic process

{X(t), t ~ 0} is shown to be a generalized semi-Markov process (GSMP). When the arc weights are exponentially

distributed and independent, {X(t), t ~ 0} is a Markov process.

In Section 2 we outline the combinatorial structures which we will treat. Section 3 contains the combinatorial

results required to pursue the case of random weights. Section 4 contains the analysis of stochastic combinatorial

problems, including the conditions under which the stochastic system is a Markov process. We use the Markov

process to derive distributions of interest and we include some results on computational efficiency. In Section 5 we

detail some important examples of constant access systems. While some of these systems have been investigated ad

hoc in [1987], [1986], and [1987], several of these systems are new to the literature. They were uncovered as

constant access systems as a result of the construction of the general system. Section 6 contains our conclusions

and some comments concerning extensions of this work.

2

2.0 BAS I C COi\llll :"lA T O RICS

In this section , we establish the tenninology and notation necessary to describe the systems we study. We

define the minimizing greedy algorithm and give Dijkstra's shonest path system as an example.

Let E be a set which we refer to as the ground set, and let C be a set of simple strings (ordered sets with no

repeats) of elements in E. Let X E ~. then the i-th element in the string X is denoted Xi , and the length of the

string is given by I X I. We will denote the operation of concatenation as "·". Thus if X= (x
1

, x
2

, •.•• xk),

a E E, and Y = (y 1 , y2 , .•. , ym), then X·a = (x 1 , x2 , ••• , xlr. ' a), and X·Y = (x
1

, x
2

, • .. , xlr., y
1

, y
2

, ... , ym).

For the string X = (x
1
,x

2
, .•• ,xlr..), the string made up of the firs t i elements, i::;; k, will be denoted Xj,

Xi= (x1, x2, ••• ,xi), and is called a prefLX of X. We will use set operations n , u, c , and e on the stri ngs of ~ to

indicate the operation perfonned on the underlying set of the string.

In this work, we will deal with string systems have the following propenies:

i) <P E C;
ii) X E C implies that Y E C for all Y C X.

The set C is called the set of feasible strings.

We often wish to refer to the set of elements of E which we can feasibly append to the string X E C. denoted as

A(X). This set is called the set of accessible elements of X and is formally given by A(X) =

{x e E: X·x e CJ. When an element of A(X) is appended to X, it is said to have been accessed . The set B is

defined as B = {X E C: A(X) = 0}, and is called the set of basic strings, followin g the tenninology used in matroid

theory. An access chain to X e C. I X I = k, is the sequence of feasible strings X0 = <j> , X1, X2, ••• , Xlr. = X. Note

thatforanyXe C. lxl =k, {Ye B:_Xisonachainofaccess toY}={Ye B :Ylr.=~}.

2.1 Clutter Intersection Systems

Let v:E ~ 9\+ be a nonnegative weight function on the set E. For each Y E B, define d*(Y) to be a known

subset of {Y} called the determining structure of Y. Let w be the objective function on B given by

thus, each basic element's weight is linear in its detennining structure. Note that if d* (Y) equals the underlying set

of Y, then w is the linear objective function common to matroid analysis.

In our development, we will make the following two assumptions concerning detenn ining structures of basic

elements:

3

i) U Ye B d*(I') = E

ii) d*(Y) .;t d* (Z) for any Y, Z e B, Y-:~; Z.

Thus the set {d*(Y): Y e B} is a clutter on the set E, see Edmonds and Fulkerson [1970]. Assumption i

guarantees that every member of E belongs to at least one determining structure. Assumption ii guarantees that for

each determining structure of a basic element, there exists a weight function for which that determining structure is

of minimum weight. In a two terminal undirected network in which each arc is on a path between the terminals, the

set of paths is a clutter on the set of arcs in a connected network, as is the set of (minimal) cutsets.

The set { d* (Y): Y e B} fully describes the objective function w for basic strings of C. however w(X) for X e ~

- B is still left undetermined. We extend the notion of determining structures to nonbasic strings. Let X be a

non basic element of ~. Define r(X) as r(X) = { d* (Y): X C Y, Y e B}. Thus, r(X) is the set of determining

structures of basic strings which can terminate any chain of access containing X. Let

(2.1)

and let d* (X") = d* (Y) n X for the maximizing Y e r(X). Note that d* (X) implicitly depends on the weight function

v. The triple (E, ~. d*) will denote a system with ground set E, feasible strings z, and determining structure function

Example 1. (A Shortest Path Example)

Consider the graph G = (N, E) in Figure 1.

Figure 1.

Let E be the set of arcs . Construct C so that X e C if X is the arc set of a directed tree rooted at node 1. Further

restrict ~ by requiring that any string containing an arc incident with node 4 is basic.

4

E =(a, b, c, d, e}, and~=(<!>. a, b, ab, ac, ad, ba, be, abd, abe, acd, ace, bad, bae}, B ={ad, be, abd, abe, acd .

ace, bad, bae}. Note that adb e ~because ad an arc incident with node 4, thus A(ad) = 0. For each Y e n, let us

define the determining structure of Y as the (1, 4) directed path contained in Y. Thus.

d*(ad) = (a, d}

d*(be) = (b, e}

d* (abd) = {a, d}

d* (abe)= (b, e 1

* d (acd) =(a, d}

* d (ace)= (a, c, e}

d*(bad) = {a, d}

d* (bae) = fb, e l.

Note that each element of E is contained in at least one determining structure. Also note that no determin ing

structure is strictly included in another. Thus (d*(Y): Y E B } is indeed a clutter on E. Note also that several

elements of z have the same determining structure, thus their objective function values are equal. Without

knowledge of v, we cannot say what the determining structure of nonbasic strings are. For instance, the determining

structure of the string ab is the longer of the arcs a and b.

2.2 Greedy Minimizing Algorithm

Let X E ~- Define the greedy generator G as the function G(X) = argminxeA(X) w(X·x). A greedy chain of

access is a chain of access Xo = 0, X 1, X2, ••• , Xk. such that Xi+ I =Xi· G(X). The greedily accessed basic string will

be denoted with a subscript "G". A greedy system has the property that for any nonnegative weight function v,

w(Y c)~ w(Y) for allY E B.

Example 2. (The Greedy System)

Recall our network example for Figure 1. Let the weight ftu1ction v be given by the following table.

x: a b c d e

v(x): 2 4 5 4

Let OUT(n) = (x e E: tail(x) = n} and IN(n) = (x e E: head(x) = n} for each n E N. The following algorithm is the

greedy algorithm for this system

initialize:

X0 = 0

A(XoJ = OUF(s)

w(XJ = 0

5

for each x E E, r(x) = v(x)

i=O

While /x. n IN(t) I = 0
'

w(Xi+I) = w(X) + r(xi+I)

A(X. I) = A(X)- {x . I} - {x E E: no (tail(x), t) directed path exists in (N, E - X . I) u OUT(head(x .
1
))}

I+ I l+ I + I+

i =i+ l

endwhile

The set of feasible strings z is the set of strings which this algorithm generates for all possible nonnegative length

functions v. The following table gives the outcome of the algorithm for the network above.

XE A(X.) w(X
1

• x)

0 0 0 0 a 2

b 4

a {a} 2 b 4

c 7

d 6

2 ab {b} 4 d 6

e 5

3 abe (b. e l 5

The example ends with X
3

= XG = abe. •

The reader should recognize this algorithm as Dijkstra's shortest path algorithm. In fact, several of our greedy

systems are recasts of well-known network optimization schemes, the hereditary family (E, C) being set of sample

paths for the algorithm. While this representation is inefficient for the deterministic problem, it is vital for the

extension to the case of random weights.

3.0 CONSTANT ACCESS AND INTERVAL PROPERTIES

We must funher restrict our optimization scheme in order to guarantee memorylessness of the random weighted

extension. Ideally, further restriction of the deterministic system should be independent of v except where it impacts

6

d*, and locally verifiable, having to do with the relationship of X to A(X). The following two properties meet this

ideal and guarantee memorylessness to randomly weighted systems.

3.1 Interval Property
-

The following property, the interval property, is an extension of the interval property given by Korte' and

Lovasz [1984] in their description of a set of greedoids called alternative precedence structure (APS) greedoids.

Let (E, ~)be a hereditary language. Let X, Y e ~such that X C Y. (E, ~) has the intern! property if for

all Z e ~with X C Z C Y, we have

[A(X) n A(Y)] c A(Z).

Thus, during construction of a chain of access, if x e E becomes accessible at some stage, call it j(xJ. x remains

accessible until either it is accessed or removed from the set of accessible elements. Once an element is removed

from the set of accessible elements, it will never be accessible again.

Example 3.

Returning to the ongoing example, consider arc d. At the onset, d is not accessible. Consider the string abe e

B. For this string, d is accessible once a has been accessed, thus j(d) = 1. d remains accessible during stages 2 and

3. Once e is appended to ab, d is no longer accessible. This property can be verified for all elements of E for each

member of B.

-3.2 Constant Access Property

The system (E, ~. d*) has the constant access property if for each X e ~- B and each Y e B with X C

Y,

I A(X) n d*(Y) I = 1.

Equivalently, (E, ~. d*) has the constant access property if for all x e A(X), x =X n P for some P e r(X). In a

subsequent investigation, we will generalize this property to allow I A(X) n d* (Y) I = n(X), where n(X) is a known

constant depending only on X.

7

Example 4.

In our ongoing example, note that for each X E ~ - B, A (X) is contained in a (1, 4) cutset and consists of the

arcs pointing toward node 4 (a uniformly directed cutset, UDC), resulting in I A(X) n P I = 1 for all sets p which

are (1, 4) directed paths, (Sigal, et. al. [1~80]).

Greedy systems which have the constant access and interval properties, are greedy systems, and have

determining structures which form a clutter on the ground set are called constant access systems.

3.3 Systems with the Constant Access Property

Henceforth, (E, ~. d*) will be assumed to be a constant access system. We will now present a set of results

which give a formula for the cost of constructing the greedy chain of access. This formula is the key to the proof of

memorylessness in the next section, as well as enhancing our understanding of deterministic greedy access systems.

For any X E ~. X = (x1, x2, ••. , x), let j(x.) = min {j: Xi E A(X.)} for each i = 1, 2, ... , n. Thus, j(x.) is the
n I J I

first stage for which xi is accessible.

Lemma 1. Let Y E B, Y = (yl' y2, ... , ym). Let i and k be such that i::; k::; m. Then yi E d* (Y k) implies that

Proof. Consider the stage j(yi)- 1, the stage immediately preceding the stage when y. becomes accessible. By the
I

constant access property, there exists unique x E d* (Y k) in the set A(Yj<YJ-)· If Yi E A(Yj<Yi>) n d* (Y k), then x E

A(Yj<Yi>) because only one member of d* (Y k) may be in A(Yj<Yi>). Thus xis in A(Yj<YiH)' x is not in A(Yj<Yi>), and x

E d * (Y k) hence x E Y k. The interval prqperty guarantees that x = yj<Yir • ·

Upon reflection, lemma 1 gives good insight into the workings of access systems with the constant access and

interval properties. It states that once one member of the determining structure is identified, the members of the

determining structure accessed before it are known automatically. In the next lemma, we establish that if an element

X is generated greedily, the last element of X is a member of d(X).

Lemma 2. Let (E, ~. d*) be a constant access system. Let X be a greedily generated string, I X I = n. Then for

each X E A(X), X E d*(X·x).

Proof. See appendix A.

Lemma 2 is based on some observations about the greedy generator. Consider the possibility that x e d* (X ·

x). In this case w(X) = w(X · x) and accessing xis "free." Two possibilities exist. Possibly x has been accessible

8

before stage m, in which case we would have accessed this low cost element before this stage. The other poss ibili ty

is that x was not accessible before stage m. In this case, j(x) = m. This implies that x and Xm are both members of

some element K of r(X · x) and

Lz.eK:r-.(X . x) v(z) = v(x) + L zeKrVC v(z)

so accessing xis certainly not costless. Hence we derive a contradiction in either case.

Thus, the greedily generated elements X E Care closed in the sense that feasibly adding any element of E - X

increases the objective function value of the string.

Lemma 3. Let Xi E C be generated by the greedy generator. Let 'tk = w(Xk) -w(~_1), k = 1, 2, ... , i. For each z

E A(X.), let C = v(z)- ['t.c)+1 + 't.c) 2 + ... + 't.]. Then
l Z JZ JZ+ I

Proof. Consider z E A(X). Let J E r(Xi . z) such that

LxeJ~u{z)) v(x) ~ ~ef/"'(Xju{z}) v(x)

(3.1)

for all J' E r(Xi · z), thus J n (Xi u {z}) = d* (Xi · z). By lemma 2, we know that z e J, and by the constant access

property {Xj(z)+l + Xj(z)+2 + ... +Xi} n d*(X · z) = 0. Thus w(Xi · z) = w(Xj(z)) + v(z). Thus, the defmition of

the -r's gives us the result

w(Xi · z)- w(Xi) = v(z)- ['tj(z)+l + 'tj(z)+2 + ··· + 'ti]· (3.2)

Corollary 4. G(Xi) = argminzeACXil Cz.

Proof. A result of lemma 3 and the defmition of the greedy algorithm. •

Lemma 3 enables us to directly compare the incremental costs of the elements appendable at a given stage. In

the sequel, we will consider the case where (v(x): x E E} is a set of independent, exponentially distributed random

variables. We will use lemma 3 to show that at each stage, the costs C are memoryless with respect to the
z

elements already accessed, and thus the incremental costs of access remain independent and exponentially distributed.

Example S.

Let us return again to our ongoing example, the weights of the arcs given by

x: a b c d e

v(x): 2 4 4

9

Consider the string X = ac, which the greedily generated string of length 2. A(ac) = { d, e}, with j(d) = 1 and j(e) = 2.

By lemma 2, de d*(acd) and e e d(ace). By lemma 1 we identify d*(acd) as {d, xj(d)' ... } = {d, a}, and d*(ace) ={e.

xj(e)' ... } = {e, c, a}, both sets are arc sets of (1, 4) directed paths. By lemma 3, w(acd)- w(ac) = Cd = v(d)- t
2

= v(d)

- [w(ac)- w(a)] = v(d)- [v(c)- 0] = 3. -w(ace)- w(ac) = ce = v(e)- 0 = 1.

Y G =ace, as predicted by corollary 4. •

4.0 STOCHASTIC CONSTANT ACCESS SYSTEMS

We are primarily interested in models of system behavior in which the critical measure of performance is a sum

of the weights of a determining structure of a basic element In the last section, we have developed characteristics of

these types of optimization problems when the weight function is a known function v:E ~ 9\+. We now wish to

consider situations in which {V(x): x e E} is a set of random weights of ground set elements, however, we wish to

solve the minimum weight basic element problem using greedy minimization which implies definite knowledge of

the incremental costs of adding various elements of the accessible set at each stage. We thus propose the following

scenario: at the time that the optimization is to take place, the ground set weights (arc lengths in our examples) are

known. However, prior to any realization of the problem being encountered, {V(x) : x e E} is a set of random

weights for which we have distributional knowledge. Thus, from a strategic point of view, the constant access

system being considered may be analyzed as a system with stochastic performance. Tactically, the system is seen

as a deterministic greedy problem.

Accordingly, we will now consider the case of optimization in the context of uncertainty. Let {V(x): x e E}

be a set of nonnegative random weights, and let {W(X) : X e CJ be the associated set of stochastic determining

structure objective function values. Thus, we wish to derive the joint distribution function F given by

F(Y, t) = P[W(Y) ~ t, W(Y) ~ W(Y') for allY' e B]

for each Y e B. With Fin hand, the derivation of

p(Y) =lim t-+_F(Y, t);

F(t) = LyeB F(Y, t);

which represent the probability a basic element Y is optimal and the distribution of the minimum weight basic

element, resp., are direct We will also demonstrate some straightforward methods for deriving performance measure

10

distributions, expected values, and conditional expected values, all of which exploit the propenies of the ~~brkov

process we develop.

4.1 Sample raths of the Greedy Minimizing Algorithm

As mentioned in the introduction, we will model the execution of the greedy algorithm as a stochastic process,

a novelty in the literature of stochastic combinatorial optimization. Let {X(t), t ~ 0) be a time homogeneous

stochastic process on state space C with transition epoches S0 = 0, S1, S2 , ... ,and intertransition times 't . = S.- S .
1 1 1-l

{X(t), t ~ 0) has the following qualities:

i) P[X(O) = 0] = 1;

ii) P[X(t + s) = Y I X(s) = Y] = 1 for allY e B, s,t ~ 0;

iii) P[X(Sn) = X · X, 'tn = t I X(Sn_1) = X]

= P[W(X·x)- W(X) ~ W(X·y)- W(X) for ally e A(X), W(X·x)- W(X) = t].

Hence, (X(t), t ~ 0) starts in 0, and is absorbed in any element of B. Furthermore, the probability of making

transition from X to X · x occurs after W(X · x) - W(X) time units, and then only if transition to X · y for some

other y e A(X) hasn't already occurred. By virtue of i- iii, we may extend the definition ofF to include nonbasic

elements of C:

F(X, t) = P[W(X) ~ W(X') for all X E c. I X' I ~ I X I' W(X) ~ n.

Thus, F(X, t) is the probability that X is on the (random) greedy sequence and that its objective function value is

less than or equal to t Since the length of X increases at each stage, we may guarantee that the transition matrix of

the underlying discrete process of X(t) is uppertriangular by assuming that the elements are listed in increasing

length.

Note that without any further distributional assumptions, {X(t), t ~ 0} is a generalized semi-Markov process

(GSMP), a."ld that imposition of the interval propeny on (E, C) restricts (X(t), t ~ 0) to the set of noninteruptive

GS:MPs, see Schassberger [1976]. However, results concerning GSMPs are almost exclusively concerned with

steady state behavior of the system. Because the characteristics of (X(t), t ~ 0) we seek concern transient behavior,

11

GSMP theory is of little help in the current context. Research into characteristics of GS!vlPs with uppertriangular

transition matrices may be motivated by the systems discussed in this paper.

4.2 Exponentially Distributed Weights

Let {V(x): x e E} be a set of mutually independent, exponentially distributed random variables with rates {)l(x): x

E E}. Recall that j(y) =min {j: y E A(Y.)}.
J

Lemma 5. Let Y e ~. I Y I = n. Let y e A(Y). Then

P[V(y) > t + tj(y)+l + 'tj(y)+2 + ... + t 0 I X(S) = Yi, 'tj(y)+l, 'tj(y)+2, ... , 't0]

= P[V(y) > t] = e -Jl(y)t_

Furthermore, given X(S) = Yi, tj(y)+I, tj(y)+2, ••• , ti, the set of random variables

{V(y)- tj(y)+I- tj(y)+2 - ... - ti: y e A(Y)} is a set of mutually independent random variables.

(4.1)

Proof. We induct on i. For i = 0, the proposition simplifies to the assumption of independent, exponentially

distributed weights, j(x) = 0 for all x e A(0).

Consider the lemma statement as an induction hypothesis true for 0, 1, ... , i. For~ y e A(Y), equation

4.1 is true for j(y) + 1, ... , i. Note that the condition X(S.) = Y implies that for every y e A(Y), V(y) > t.<)
1

-
1 J y +

tj(y)+2 - ... - ti. Thus

ti =min {V(y) -tj(y)+l-t(y)+2 - .•. -'t
0

: y E A(Y)}- min {V(y): y e A(Y)J

is the minimum of a set of mutually independent, exponentially distributed random variables, which implies that ti+I

- exp Jl(Y), where

(4.2)

By invoking the strong memory less property, we have { V(y) - 'tj(y)+l - 'tj(y)+2 - ••• - ti- ti+l: y e A(Y) n

A(Yi+l)} is a set of independent, exponentially distributed random variables because A(Y) is assumed to be a set of

independent random variables. Since {y: j(y) = i + 1} are assumed to be independent of the history of {X(t)} to this

point, we have established that {V(y) - tj(x)+l - tcx)+2 - ••• - ti- ti+l: y e A(Yi+l)} is a set of independent,

exponentially distributed random variables. •

Let Q be an I~ I x I~ I matrix given by

12

{

Jl(X)

Ox.Y = :(X)
Y = X·x E ~

X=Y

otherwise.

Theorem 6. {X(t), t ~ 0} is a continuous time Markov chain with infinitesimal generator matrix Q.

Proof. Let Y E ~. I Y I = k. By lemma 3, we know that, con<litioned only on the greediness of Y,

W(Y · y)- W(Y) = V(Y)- ['tj(y) + 'tj(y)+l + ... + -r.)

(4.3)

for each y E A(Y). Thus, the implication of lemma 5 is that, conditioned on Y being greedy, the set {W(Y · y) -

W(Y): y E A(Y)} is a set of mutually independent, exponentially distributed random variables.

Let P x.it) = P[X(t) = Y I X(O) =X] for each pair X, Y E ~.

Corollary 7. Let Y E B. Then F(Y, t) = P[X(t) = Y] = P
0

y(t)

E!:Q.QL. We designed {X(t)} such that sample paths of this process are greedy access chains. Since (E, ~. d"') is

assumed to be a greedy system, sample paths terminate in greedy optimal basic elements. •

Thus, we have shown that F(Y, t) is a first passage time distribution of a Markov process with state space~

and generator matrix Q.

Example 6.

Reconsider the ongoing shortest path example. Suppose we wished to find F(abd, t). We can write the

Kolmogorov equation P'(t) = P(t)Q as a set of frrst order differential equations which may be solved iteratively. In

the case of abd, the system is given by

P 0 .0'(t) = -[Jl(a) + Jl(b)] P 0 .0(t)

p 0,b'(t) = Jl(b) p 0,0(t)- [Jl(a) + Jl(e)] p 0,b(t)

P 0,ba'(t) = Jl(a)P 0,b(t)- [Jl(d) + Jl(e)] P 0,ba(t)

p 0,bad'(t) = Jl(d) p 0,ba(t).

When the rates are given by:

Jl(a) = 2;

Jl(d) = 1;

this system has solution

Jl(b) = 1;

J.!(e) = 3

Jl(C) = 4;

F(bad, t) = P 0 , ba/t) = P[W(bad) ~ W(Y) for all Y E B, W(bad) ~ t]

13

- 3t - 5t -4T
= 1/30 - 1/3 e - 1/5 e + 1/2 e . •

4.3 Performance Measures

In this section , we discuss some of the uses of the distribution F(Y, t) in characterizing some measures of

perfonnance of the stochastic constant access system. While the fundamental equations

i) * F(Pi, t) = P[W(Y)::; t for some Y e B such that d (Y) =Pi]

= Ly:d*(Y). pi F(Y, t) for each PiE {d*(Y): Y e B}

ii) F(t) = P[W(Y)::; t for some Y e B)= LveB F(Y, t)

iii) Py = P[W(Y)::; W(Y') for allY' e B)= lim t--+- F(Y, t)

are obviously valid, there exist more efficient methods for the computation of these distributions that do not require

full knowledge of F(Y, t) or even generation of every element of~. Historically, studies cited in the introduction

were focused on the calculation of F(t) for each example problem. Analysts undertaking analysis of some stochastic

constant access system may have no need for the joint distribution.

Let P = {P.: P. = d* (Y) for some Y e B}. Let ~P = (~ -B) u P. Consider the modified continuous time
I I

Markov chain {Xp(t), t;;::: 0} on state space ~P with transition probability matrix Qp given by

p
Q X.Y = QX,Y X, y E ~ - B

y E B, d*(Y) = P ..
- I

Through this simple combining of basic elements of~. we have created a new process for which the absorption

distribution is P[Xp(t) = P. I Xp(O) = cp] = F(P., t). For the shortest path problem, F(P., t) is the probability that
I 1 I

Pi is the shortest path and it's length is less than or equal to t.

Arguably, the process {Xp(t)} makes {X(t)} obsolete, as we are rarely interested in all of the sample path

infonnation {X(t)} can provide. More to the point, {Xp(t)} seems to be very inefficient because it has several

indistinguishable sample paths. The process {Xp(t)} may be streamlined by performing the following procedure on

the matrix Qp and state space ~p· We call this procedure the lumping procedure for determining structure

absorption.

initialize:

L =P.

14

while there exist X. Z E t;P such chat Qp x. w = Qp z. w = 0 fnr all WE (p- Land Qp X, w = Qp z. w fo r

all WE L

for every T E t;P' replace Qp TX with Qp TX + Qp r
2

remove Z from 'P
replace L with L v {X E 'p: Qp x.w = 0 for all W E (p- L}

repeat.

Note that performing the lumping procedure preserves the upperuiangularity of generator matrices. An

analogous procedure may be constructed for any set of combined absorbing states, and the procedure extends to

discrete time Markov chains in the obvious way. The theoretical importance of the lumping procedure is that il

assures us that the system we choose to analyze has no redundant sample paths. In applications, we oflen use the

lumping procedure in the abstract, lumping state space elements by some structural argument. In this case, the

lumping procedure provides sufficient conditions for the validity of such an argument

The distribution of the weight of the optimal basic element may be derived via a method similar to the one jusl

described. Suppose we combined all of the basic elements into a single element'¥, defining~'¥=(~- B) u {'¥}

and {X'f'(t), t ~ 0} with generator Q '¥defined by

Q '¥ x.Y = Qx,Y if Y e B

'¥
Q X,'P = LyeB QX,Y'

Then P[X'P(t) = Y I X'f'(O) = 4>] = F(t) is the distribution of the weight of the minimum weight clutter element

Example 7.

By lumping the states with identical determining structures and performing the lumping procedure , we greatly

reduce the size of the state space. This reduces the sate space size from I~ I = 14 to I ~P I = 8. If we are interested

only in F(t), the distribution of the shortest path, we may further reduce the state space size to I ~\jf I = 5. On larger

or denser networks, these reductions are more pronounced.

We need not generate the original state space~ to generate~ or~ For the shortest path problem, nonbasic

states with identical acessible sets may be lumped to give ~p· The same is true of I ~\If I. Thus, we may perform

the lumping procedure in the abstract. avoiding the computational work entailed in generating ~·

15

4.4 Performance Measures Based on the Embedded Markov C ha in

Let (Y", n ;;?: O}be the embedded discrete time Markov chain for {X(t)} . Thus, (Y" } has state space~ and

transition probability matrix P given by

-1
Px.x·x = J.L(x) [J..L(X)] (4 .4)

for X·x e ~. For the process {Y
0

}, there is exactly one sample path from<!> to each member of B. Thus, for Y e

B, I Y I = m, we have the solution

(4.5)

Some measures easily derivable by summing different subsets of (Py: Y e B} from (Y
0

} are

ii) P[x e d* (Y G)] for some x e E

iii) P[I Y G I = m], m = 1, 2, ... , IE I

iv) P[ld*(Y)I =i],i= 1,2, 1EI.

The ~rrst measure is the probability that a given determining structure is the minimum weight determining structure.

For the shortest path example, this is the probability that a given path is shortest The second density gives the

probability that a given element of Eisa member of the optimal determining structure, this is the probability that a

given arc is on the shortest path. The third density function gives the distribution of the length of the optimal

element. This is the number of steps taken by the greedy algorithm in solving the given problem--the distribution

of the execution time of the algorithm~ Finally, the last density gives the probability that the optimal determining

structure is of a given length. This density is especially interesting if J.L(x) is the same for each x e E. Each of

these measures may also be calculated efficiently by lumping absorbing states in the obvious way and performing

the lumping procedure.

For any Markov chain (Z
0

, n;;?: 0} with transition probability matrix P with strictly uppertriangular transition

probability matrix, we solve the system

p0 = 1;

Py = Lxe~ Px Px,y

directly for the set (Py: Y is absorbing in (Zn} }.

Example 8.

16

Returnin g to the ongoing shortest path example. we have the followin~r table for the basic elementc;:

Y E B

ai

be

atd

abe

and for the directed {s. t) paths:

path set Pi

and criticality indices

{b,e}

{a, d}

(a, c, e 1

arc x

a

b

c

d

e

0.1111

0.2000

0.0278

0.0833

y E B

0.1111

0.3333

0.0333

0.1000

PfPi is the shortest path in Gl

P[x is on

0.3833

0.2833

0.3333

the shortest path

0.6166

0.3833

0.3333

0.2833

0.7166

-4.5 Expected Value Analysis

in Gl

All of the Markov process's we have considered, regardless of any lumping performed, have uppertriangular

generator matrices. We present here three simple formulae for the computation of the kth moment of the conditional

time until absorption of a Markov process with uppertriangular generator matrix. Let Q be the generator of the

original process {X(t), t;;:::: 0}, let Q '¥and Qp be the generators defined above. Let Y e Band Pie P. Let Ux,

UxiPi' and UxiY be given by

Ux = inf{t X'l'(t) E '¥ I X'¥(0) =X} for every X E c'l'

Ux I pi = inf{ t Xp(t) = pi I X p(O) = X, lim t--+- Xp(t) = Pi} for every X E cp

Uxly=inf{t:X(t)=Y I X(O)=X,lim 1 __._X(t)=Y} foreveryXe C
k k k ..

and defme the moments 'tx(k), 'tx IPi(k), and 'txiy(k) as EUx , EUx iPi , and EUx iY , resp. We seek the quanuues

17

k I * 'tc> I pl(k) = E[W(Y G) d (Y G) = P)

'tc> I y(k) = E[W(Y G)k I y G = Y] .

The fust step equation for Ux is given by
'I' 'I' -1

Ux = [1 + Lze~'l' Q x.zUzl [-Q x.xl , (4.6)

with U'P = 0. Using moment generating functions, we derive

'I' 'I' -1
'tx(k) = [k'tx(k- 1) + Lze~'l' Q x.z 'tz(k)] [-Q x.xl (4.7)

for each X E ~'I' and each k = 1, 2, ... , and with t'P(k) = 0. Using 'tx(O) = 1 for all X E ~'I' as a boundary condition,

we can directly compute {tx(k): X E ~'I'} from {tx(k- 1): X E ~'f'} and Q'I'. In the case of k = 1, equation 4.7

simplifies to the familiar fust step expected value equations
'I' -1 'I'

'tx(l) = [-Q x.xl + Lze~'l' P xz 'tz(l) (4.8)

where P 'I' x.z = Q 'I' xz [-Q 'I' x.xl -
1

is the transition probability from X to Z for the process {X'P(t)}.

With minor modifications to this methodology, we may find 'tx 1 Pi (k) for each X E ~p· Let us define the set

Cp. = {XE ~P: P[Xp(t) = Pi I Xp(O) = X] > 0}, thus Cp. is the subset of ~P which communicates with Pi.
I I

Following 4.7, we find
p p -1

'txiPi(k) = [ktxiPi(k- 1) + LzecPi Q xz 'tziPi(k)] [-Q x.xl • (4.9)

'tp.l p.(k) = 0. Note that, consistent with a fundamental property of Markov process, the expected sojourn time in
I I

state X is unaffected by the conditioning. The fonn of 4.7 can also be used to find the expected value tx 1 y(k),

-1
'tx ly(k) = [k'tx IY(k- 1) + Lzcy Qxz 'tzipi(k)] [-Qx.xl · (4.10)

As mentioned before , the original process {X(t), t 2! 0} has a unique sample path to each basic element Let I Y I =

m, then for each i < m, 4.10 simplifies to

Thus

(4.11)

Example 9.

18

Revisiting our ongoing shortest path example, we calculate 1:0(1) = 0.6833 and 1:
0
(2) = 0.6655. nus g1ves us

a shortest (s, t) path length variance of0.1986. Note that E[v(a) + v(c) + v(c)] = 1.0833, E[v(a) + v(d)] = 1.500, and

E(v(b) + v(e)] = 1.333. Thus, if we were to naively estimate the length of the shortest path by the minimum of the

expected value of the sums of arc lengths, we would overestimate the length by 0.4 , over one standard deviation.

5.0 EXAMPLES FROM NETWORK OPTIMIZATION

In this final section, we present examples of constant access systems arising in network optimization. These

constant access systems may be classified into two groups, those which have determining structures which are paths

or cutsets in the network at hand, and those which involve the bottleneck objective function. Several of these

constant access systems have already appeared in the literature as separate results. The purpose of presenting them

here is to highlight their interrelationship and to build the reader's intuition with familiar structures. The k-trigger

network exam pie in Section 5.1 and all of the bottleneck objective function examples arc presented in the literature

for the first time in this paper. We shall illustrate the concepts and procedures described in sections 2 through 4

using these examples.

5.1 Stochastic Path and Cutset Optimization

In this section, we present some constant access systems in which the determining structures are paths or

cutsets. The examples provided are the shortest path system (Kulkarni [1987]), the PERT system (Kulkarni and

Adlakha[1986]), the maximum flow on directed planar networks (Kulkarni [1987]) and a new system which we call

the k-trigger network.

Example 10. (Shortest Path Systems)

We have used an instance of the shortest path problem to motivate theory we have presented thus far. In th is

section, we present this problem in its full generality. Markov processes were first used to analyze shortest paths in

Markov networks in Kulkarni [1987].

Let G = (N, E) be a directed graph. Lets and t be two prespecified nodes in N, and suppose that there exists a

(u, t) directed path for each u e N. We will speak of a path as a set of directed arcs, the incident nodes being

implicit. If x e E is given by the ordered pair (k. 1), then we say head(x) = I and tail(x) = k. Let IN(n) denote the set

(x e E: head(x) = n} and OliT(n) denote the set (x e E: tail(x) = n} for each n e N.

19

Cast in the notation of constant access systems, Dijkstra's algorithm for finding the shonest path in G is given

by the following algorithm.

initialize:

X0 =0

A(X0) = OUJ(s)

w(XoJ = 0

for each x E E, r(x) = v{x)

i=O

While /xi n IN(t) I= 0

xi+l = argminxEA(Xi) r(x)

w(Xi+l) = w{Xi) + r(x;+)

A(X;+1) = A(Xi)- {x;+1}- {x E E: no (tail(x) , t) directed path exists in (N, E- X;+ 1) u 0UJ(head(x;+1))}

i=i+l

endwhile

Let~ be the set of strings possibly generated by this algorithm for all nonnegative length functions. Thus, let X be

a string of arcs, I X I = i and let n = head(xi)· X e ~ if and only if

i) (N, X) is an s-rooted directed tree~

ii) There exists at least one directed (n, t) path P such that none of the nodes implicit in P are incident with

edges in X.

iii) Properties i and ii hold for every prefix of X.

From these properties, it is obvious that X e B if and only if head(~) = t. The set {A(X): X e ~} is the set of

uniformly directed cutsets (UDCs) in G along with the empty set.

·rne determining structure of each Y e B is the unique directed (s, t) path contained in (N, Y). For X e ~- B,

d* (X) is identified by

d*(X) is the subset of maximum weight of an (s, t) path contained in X, where the maximization is performed over

those (s, t) paths which are determining structures of basic elements for which X is a prefix.

20

The verification of the constant access property for (A, ~. d*) is a result of Sigal ct. al. [1980]. They state that

the intersection of a (s, t) path with a UDC is always a single element set. From our knowledge of Dijkstra's

algorithm, we know that an arc x becomes accessible as soon as an arc incident with tail(x) is accessed. It remains

accessible until it is accessed, or until there remain no (head(x), t) paths which arc not "crossed" by paths of accessed

arcs. From this intuitive argument, we see that (A,~ . d*) has the interval propen y.

Because (A, C. d*) is a greedy constant access system, we may apply the results from Section 3 to find {F(Y,

t), Y e B, t;;:: 0} when G is a network with arcs with independent, exponentially distributed lengths. The shonest

path system has the propeny that for each Y e B, (N, Y) contains a unique (s, t) path. If we were not interested in

the actual order of access, we would lose nothing by lumping together strings with identical underl ying sets--in fact,

the lumping procedure would do this automatically. This reduction in the size of the state space is especially

dramatic for dense graphs. If we were interested in only the length of the longest path, the lumping procedure would

combine all states with the same accessible seL Thus, the state space could be replaced by the set of UDCs.

We may use the method for shonest path problems to analyze maximum flows in undirected planar networks

with independent, exponentially distributed arc capacities by utilizing the topological dual of the network. It is well

known that the minimum capacity cutset in a planar network G is identified as the shonest path in the dual network

G', where the arc lengths in G' are the capacities in G.

Example 11. (Longest Path Systems)

Let G = (N, E) be an acyclic directed network. Again lets and t be two prespecified nodes inN, and suppose

that there exists a (u, t) path for each u e N .. If we add { v(x): x e A}, a set of weights representing durations of the

tasks represented by the arcs, the resulting network is called a PERT network. In such a network, tail(x) = head(y)

implies that activity y must be completed before activity x can commence, y has precedence over x. The goal of

analysis of PERT networks is the identification of the longest path in G and its length. The well-known forward

sweep algorithm for finding the longest path in G is given by the following

initialize:

X0 =0

A(X0) = OUT(s)

w(XoJ = 0

for each x E E, r(x) = v(x)

i=O

21

While /Xi-E/:;r0

xi+I = argminxEA(Xj) r(x)

w(Xi+l) = w(X) + r(xi+l)

if /X; n!N(head(x;+1)) / = indegreefhead(xi+I)) then

A(Xi+I) = A(X;J u OUT(head(xi+I))

else

A(Xi+I) = A(X;)

i=i+l

endwhile

Let C be the set of strings possible generated by nonnegative length functions and let B be the set of basic elements

of~· This structure is the well-known schedule greedoid, so-named by Korte' and Lovasz [1984]. The determining

structure of Y e B, I Y I = m, is constructed as follows:

i) Ym E d*(Y);

ii) for each y e d* (Y), identify {yi
1

, yi
2

, ••• , Yik: head(yij) = tail(y)). Let i* = maxj=l..k {ij), then yi* e d* (Y).

Thu~. the last arc accessed which points into tail(ym) is in ct* (Y), the last arc accessed pointing into that arc is in

d*(Y), and so on. This backward chain ends when an arc y with tail(y) =sis identified as a member of d*(Y),

forming a (s, t) path.

Let us verify that (A, C. d*) has the constant access property. Consider X e C- B. A(X) is obviously a

subset of an (s, t) UDC. Again using the result of Sigal et. al. [1980],.we know A(X) contains at most one arc

from each (s, t) path. We need to show that this number is exactly one for (s, t) paths in r(X).

Let Y e B and consider k < I Y I. Let i = max {j ~ k: Yj e d* (Y)), thus yi is the last element of d* (Y)

accessed at stage k. Let y e d*(Y) with tail(y) = head(yJ Because (Y) =A, and by the defmition of i, y e A(Yi)·

Thus, A(Y) contains exactly one element of d* (Y).

The interval property on (A, 0 is straightforward to show, the proof is provided by Korte' and Lovasz [1984],

who called all greedoids with the interval property "alternative precedence strucnrres," or APS greedoids. The greedy

algorithm performed on (A, C. d*) is the obvious forward sweep algorithm, see Lawler [1976].

22

Example 12. (Maximum Flow on Planar Directed Graphs)

Let G = (N, E) be a directed pianar graph and let nodes s and t be prespecified source and sink nodes. We

assume that for each u e N, there is at least one (u, t) path in G. Let v:E~9\+ be a function giving the capacity

values for each of the arcs.

Let {Cl, C2, ... , Ck} be the set of UDCs in G. The maximum (s, t) flow MF is given by

MF = Lxe Ci v(x).

The constant access system constructed must have the property that { d* (X) , X e ~ } = { C1, C2 , •.. , c.J . The

development of the greedy constant access scheme to find the maximum feasible flow in G , given by Itai and

Shiloach [1979], depends on the existence of the topmost path TP(E') in the subgraph G' = (N, E') for any subset E'

C E such that an (s, t) path in G'. The algorithm is given as follows:

initialize:

X0 = 0

w(XoJ = 0

for each x E E. r(x) = v(x)

i=O

While TP(E- Xi) :;e 0

xi+l = argmir£XETP(E- X) v(x)

w(Xi+l) = w(X) + r(xi+l)

for each x E TP(E -Xi)

r(x) = r(x)- r(xi+l)

i = i + 1

endwhile

Let ~ be the set of strings which this algorithm might generate for all possible choices of nonnegative capacity

functions v, and let B be the set of basic elements. Let Y
0

e B. There is no topmost path in G' = (N, E - Y
0
), but

Yn E 1P(E- Y
0

_ 1). Thus Y
0

must contain an (s, t) UDC, and this UDC must contain Yn· Chaining backwards, we

are able to identify the UDC d* (Y
0

) by lemma 1.

This algorithm, known as the path filling algorithm, is shown to produce the maximum flow w(Y G) = MF in

Itai and Shiloach. {A(X): X e ~} is the set of topmost paths in G. The constant access property holds as a result

I ci (1 pj I = 1 for each path pj in the set {P 1' p 2• ... , p m} of (s, t) paths.

23

Let us verify the interval property for (E, ~). For each x e Ewe know that once x e A(X), x is on the current

topmost path, and will remain in the set of accessible arcs until either x is accessed or the topmost path no longer

includes x. Let k be the smallest index such that x e A(Xk). This implies that Xk contains at least one arc of every

(s, t) path which involves x. In stage _n, n>k, x cannot be on the topmost path of (N, E - Xn) because Xk c Xn.

Thus, (E, ~) has the interval property. Recapping, the system (E, ~. d*) has the interval and constant access

properties, is a greedy system, and { d* (Y): Y e B) is a clutter on E. Hence (E, ~. d*) is a constant access system.

Let us consider the case where the capacities on the arcs are a set of independent, exponentially distributed

random variables. The full process on the state space ~ will give us the absorption time distributions F(Y, t) =

P[X(t) = Y] = P[Y G = Y, w(Y) ~ t], for each Y e B. By lumping the members of Y by their determining

structures, we may find F(Ci, t), the probability that Ci is the minimum capacity UDC in G and its capacity is less

than or equal to l This may be accomplished by lumping strings with the same accessible sets, reducing the state

space size to the number of (s, t) paths.

The probability that the capacity of a given arc constrains the maximum flow of the network, the criticality of

the arc, is seen to depend on the flow value. If we wish to find the criticality of a set of arcs K, we suggest a

lumping of the basic states into two sets. One set contains all basic states for which at least one member of K is a

member of the determining structure, and is lumped into the single state'¥ 1• The other set contains the complement

of the first and is labeled '¥ 2• The lumping procedure should then be executed on the remaining state space, as

suggested in Section 4.3.

If one were interested in reducing the capacity of the network to to or less by interdicting arcs in the set K, one

would be interested in I - P[X(to) = '!' 11 = P[K contains at least one critical arc and flow is greater than to] as a

measure of the importance of the set Kat the flow value lo· Similarly, we can construct the embedded Markov chain

as given in Section 4.4 to give the probability that a string is a minimum weight string, the probability that a UDC

is the minimum capacity UDC, and the probability that a set of arcs K contains critical arcs.

Example 13. (K-trigger Networks)

Consider a directed acyclic network G = (N, E) with arc length function v:E ~ 9{+. In this problem

formulation, it is intuitive to regard the arcs of E as activities as in PERT formulations. Suppose that each node n

e N has a requirement constant len so that activities emanating from n cannot commence until len activities pointing

into n have completed. Suppose we are given prespecified nodes sand l Assume that indegree(s) = 0. We are

interested in the time of completion of the ktth arc in IN(t) to complete.

24

For the PERT formulation , ~= indegree(n) for each n E N, no activity in OUT(n) can stan until all acuvities

in IN(n) are complete. Thus, the time when the last arc completes is the length of the longest path in G. If k
0
= 1

for all n e N, the time of completion of the first arc in IN(t) is the length of the shortest path in G. Thus, This

problem which we name the k-trigger network problem generalizes both shortest and longest path problems on

directed graphs.

The k-trigger network model is also useful in modelling the assembly of information products such as tracking

information assembled by an air control system. Each of the activities represents some data collection task or some

ambiguity resolution activity. Each activity must have several independent inputs which it uses to produce a

coherent product or conduct some data collection requiring an initial solution. These activities may also represent

the command task, giving permission for subsequent activities to begin.

We may flnd the completion time of the Is th activity in IN(t) by the following greedy algorithm

initialize:

X0 =0

w(XoJ = 0

for all x E E, r(x) = v(x)

A(X0) = OUT(s)

i = 0

While /X; u IN(t) I < kt

xi+I = argminxEA(X.) r(x)

w(Xi+I) = w(Xi) + r(xi+I)

for all x E A(X;)

r(x) = r(x)- r(xi+I)

if /xi+J u!N(head(x)) / = khuul(xJ then

A(Xi+I) = A(Xi)- IN(head(x)) u OUT(head(x))- {x E E: no (tail(x). t) path exists in

(N, E -Xi+I) u0UT(head(x;+1))}

else

A(Xi+I) = A(Xi)- {xi+d- {x E E: no (tail(x). t) path exists in (N, E- Xi+ I) u

OUT(head(xi+I))}

i=i+l

endwhile

25

Let~ be Lhe set of strings generated over all length functions v and let B be the set of basic strings. Clearly, if

this algorithm generates the basic string Y
0

, we know Lhat Yn is the ~th arc in IN(t) to complete, thus clearly Yn e

d*(Y
0
). Furthermore, recall that j(y

0
) is the minimum j such that Yn E A(Y). From the algorithm, we see that

head(Yj(yJ) = tail(y0), and Yj(yn) is the ~(yn)th arc to be accessed in IN(tail(y0)). Hence, it must be on the longest path

from s to tail(y
0

) in the sub graph (N, Y 0)~ Thus, we can chain backwards to identify d*(Y
0

) as the longest (s, t) path

in the sub graph (N, Y
0
). The length of this path is the shortest completion time of the assembly process.

Because d* (Y
0

) is always an (s, t) path, we have that { d* (Y): Y E B} is a clutter on E. The interval property

holds because an arc x becomes accessible when ktail(x) arcs in IN(tail(x)) have been accessed and remains accessible

until it is accessed or until khead(x) arcs in IN(head(x)) are accessed. In the latter event, x remains inaccessible

thereafter.

The constant access property is more difficult to verify. One must recognize that given that~ is generated by

the above algorithm, A(X) is a partial UDC. One must show that any (s, t) path P1 for which I A(X) n P1 I = 0

is dominated in length by at least one path P2 for which I A(X) n P2l = 1. P1 will never be the longest (s, t) path

in (N, Y) for any Y ::::> ~. Y E B. Hence, P1 e r(X). Thus, the constant access property holds for this system.

The system has the three properties necessary for it to be a constant access system.

We can determine the probability that a given arc is critical, a member of d* (Y G), by using the embedded

Markov chain. We can derive interesting performance measures such as the distribution of the total time of

assembly, the probability that a given arc is critical given the assembly time is less than to• and the probability that

a set of arcs contains a critical arc given that the assembly time exceeds to by using the lumping procedure to alter

the matrix Q.

5.2 Systems with Bottleneck Objective Functions

In this section, we discuss three constant access systems which use the bottleneck objective function. The

bottleneck objective function, first specified by Edmonds and Fulkerson [1970], is used to fmd the structure with the

lowest cost where the cost of a structure is the weight of the maximum weight element in the structure. In this

section, we present examples where the structures are cutsets, paths and trees. These are given in network reliability,

bottleneck shortest path, and bottleneck minimum weight tree.

Example 14. (Network Reliability)

Consider a network G = (N, E) with undirected arcs whose usability is perishable. For instance, consider a

communications network with links which fail with time. The network contains a set S of sender nodes and a

26

disjoint set T of terminals. We are imcrested in the time it takes for the network to fail to the point where there 15

no path of usable arcs from some member of S to some member of T, that is, the time that S and T are no longer

completely connected. Note that this problem has (s, t) and (s, K) reliabili ty as specia.I cases.

Let {C1, C2, ..• , Ck} = C be the set of (S, 1) cutsets, and let v:E ~ 9\+ be a function giving the lifelength of

each arc. The quantity of interest is the time of failure TF of the longest lived arc in the shortest lived cutset,

TF = mine;.ec m~eC;. v(x).

TF is a well-known instance of the bottleneck objective function on the set C. The obvious algorithm for finding

TF is given as

initialize:

X0 =0

w(XoJ = 0

for all x E E, r(x) = v(x)

i = 0

While SandT are completely connected in (N, E- Xj)

xi+l = argminx.e£-Xi r(x)

w(Xi+l) = w(X) + r(xi+l)

for all X E E - xi

r(x) = r(x)- r(xi+ l)

i=i+l

endwhile

At each stage, w(X) = v(x), thus if the algorithm terminates in n steps, xn is the longest lived arc in the

shortest lived cutset, and w(Xn) = v(xn) is the time of disconnection. Let ~ be the set of strings generated by this

algorithm over all nonnegative failure time functions.

The system (E, ~. d*) has determining structures which are singleton sets, d*(X) = {xi}. Thus {d*(Y): Y e B)

= E, thus { d* (Y): Y e B} is a clutter on the set E. For each ~ e ~.

thus the constant access property is satisfied , I d* (Y
0

) u A(X) I = I y n I = 1 for each Y n such that Xi c Y n· The

interval property holds because every arc is accessible until it is accessed or the algorithm terminates. Thus, (E, C.

d*) is a constant access system.

Clearly, the network reliability problem for the case where the lifelengths are independent exponentials is

solvable using Markov processes. By appropriate lumping of basic elements, we may determine for each time of

failure the probability that a given cutset is longest lived and the probability that a given arc is the arc which

determines the lifelength of the system. The embedded Markov chain may be used to fmd these quantities without

regard for failure time.

Example 15. (Bottleneck Shortest Path)

We now turn attention to a system which finds the minimum weight path where path weights are given by the

longest arc in the path. Let {PI' P2, •.• , P
0

} = P be the set of (s, t) paths in G. The bottleneck (s, t) path problem

may be stated as: find the (s, t) path with the shortest longest arc. TI1at is, fmd Pi which minimizes

BP = minP·eP maxxeP· v(x).
I I

The following greedy algorithm finds the minimizing path and the optimal value BP.

initialize:

X0 =0

w(XoJ=O

for all.x E £, r(.x) = v(.x)

i = 0

While Xi does not contain an (s, t) path

.xi+l = argmin~eE-X· r(.x)
'

w(Xi+l) = w(Xi) + r(.xi+l)

for all.x E E- Xi

r(.x) = r(.x)- r(.xi+l)

i=i+l

endwhile.

BP is given by w(Y 0). Let C be the set of all strings generated by this algorithm. As with the reliability

problem, the interval property holds because each arc is accessible at each stage prior to termination. The

28

determining structure of each Y me B is Yn ' and A(X) = E- X
1

for all nonbasic Xi. Hence the constant access

property must hold. Obviously { d* (Y): Y e B} = E, a clutter on itself.

Thus, (E, ~. d*) is a constant access system. The methodology in sections 4.3 through 4.5 may be used to

find the distribution of BP, the moments_ of BP, and the probability that a given arc is the arc determining BP. Note

that the minimizing path is not unique, and every (s, t) path in (N, X) is equall y qualified to be the minimum

weight path.

Example 16. (Bottleneck Spanning Tree)

Let {T 1, T 2 , ••• , Tn} be the set of arc sets of spanning trees in the undirected network G = (N, E). The

bottleneck spanning tree problem, very similar to the bottleneck path problem, is to fmd the spanning tree with the

shortest longest arc,

BST = minTiE T maxxe Ti v(x).

The greedy algorithm to solve the bottleneck spanning tree problem is identical to the bottleneck path problem,

except that we terminate the algorithm when Xi contains a spanning tree. The determining structures are singleton

arc sets, and the interval and constant access properties hold. Hence, the system (E, ~. d*) is a constant access

system.

6.0 CONCLUSION

In this work, we have constructed a new structural framework for randomly weighted network optimization

called a constant access system. If a structure has the properties we have given here, we may find the joint

distribution of the minimum weight basis element and its weight by calculating the absorption time distribution of a

Markov process. We provide the construction of this Markov process, and demonstrate expansively how we may

exploit the structure of the Markov process to derive measures of stochastic performance for the general problem.

We have established that the mechanism of transition in a Markov process is to greedily minimize the sojourn

time in every state. This fortunate property allowed us to model the execution path of the greedy algorithm as the

sample path in a Markov process.

29

APPENDIX A.

In this appendix we present the proof to lemma 2.

Lemma 2. Let (E, ~. d*) be a greedy constant access system. Let X be a greedily generated string, I X I = n.

* Then for each x E A(X), x E d (X·x). -

Proof. For each i, defme the following two subsets of r(Y · y). Let D = {J E r(Y · y) such that

~E JnX. x v(z) = maxJE r(X. x) LzE JnX. x v(z)

Thus, d*(X. x) = J n X. X for any J E D. Let K = {J E rex. x): X E J}. Let Dk = {J E r(Xk) such that

LzE JnXk v(z) = maxJE nx.t> LzE JfiX}c v(z)

Thus, d*(Xk) = J n xk for any J E Dk. Let Kk = {J E rcxk): X E J) We will show that if Kk c Dk f-ork= 0,

1, ... , i, then K C D. This will prove the lemma by induction.

Let i = 0. In this case the proposition holds trivially since K = D = { d* (Z): Z E B). Thus, suppose that fork

= 0, 1, ... , i, K k C Dk. In order to show that this implies that K C D, we need to treat two cases: j(x) = i, and

j(x) < i.

~: j(x) = i, thus x is accessible only after Xi has been accessed. Let K E K. Then lemma 1 gives us that Xi E

K so K E Ki. Thus, by induction hypothesis, K E Di. We must show that K E D.

Let J E D. Then

= Lze KnX. x v(z). (A.1)

Thus, KED.

~: j(x) = h < i. Let K E K. Let J E D and assume that K e D. Thus

LzE KnX · x v(z) < LzE JnX · x v(z). (A.2)

The constant access property guarantees that Xi e K, and the induction hypothesis guarantees that Xi E Ji.

Hence

LzE ~-1 v(z) + v(x) = ~E KnX. x v(z)

< ~E 1~.1 v(z) = LzE JnX~_1 v(z) + v(xi) ,

30

(A.3)

the inequality resulting from equation A.2. Note that {;lCi , x} C A(Xi- 1). It is strai ghtforward to show that if

inequality A.3 holds, then G(Xi-1) :t: Xi · In fact, w(Xi- 1 · xi) > w(Xi-1 · x), and both xi and x were accessible at

stage i- 1. This shows that for case 2, if we assume K E K and K e D, we can derive a contradiction.

Thus, we have shown for both cases that K C D. The lemma follows directly.

ACKNOWLEDGEMENT

This work was sponsored by the Naval Postgraduate School Research Foundation.

REFERENCES

[1] COREA, G. AND V. G. KULKARNI. 1987. Minimum Cost Routing on Stochastic Networks. Technical

Report UNC/OR{fR.-87 /8, University of North Carolina, Chapel Hill , NC.

[2] EDMONDS, J. AND D. R. FULKERSON. 1970. Bottleneck Extrema. Journal of Combinatorial Theory 8,

299-306.

[3] KORTE' B. AND L. LOVASZ. 1984. Greedoids - A Structural Framework for the Greedy Algorithm .

Progress in Combinatorial Optimization. Academic Press, Canada.

[4] KULKARNI, V. G. 1987. Shortest Paths in Networks with Exponentially Dis tributed Arc Lengths.
Networks 16, 255-274. ·

[5] KULKARNI, V. G. AND V. G. ADLAKHA. 1986. Markov and Markov-Regenerative PERT Networks.

Operations Research 34, 769-781.

[6] KULKARNI, V. G. AND V. G. ADLAKHA. 1987. Maximum Flow in Planar Networks with Exponentially

Distributed Arc Capacities. Stochastic Models I, 263-289.

[7] ITAI, A. ANDY. SHINLOACH. 1979. Maximum flow in planar networks. SIAM J. CompuL 8, 135-150

[8] LAWLER, E. L. 1976. Combinatorial Optimization: Networks and Matroids . Holt , Reinhart, and

Winston, New York.

[9] NEUTS, M. 1981. Matrix-Geometric Solutions in Stochastic Models. Johns Hopkins University Press,

Baltimore, MD.

31

[10] SCHASSBERGER, R. 1976. On the Equilibrium Distribution of a Class of Finite-S tate Generalized Semi
Markov Processes. Mathematics of Operations Research 1, 395406.

[11] SIGAL, C. E., A. A. B. PRITSKER, AND J. J. SOLBERG. 1980. The Use of Cutsets in Monte Carlo
Analysis of Stochastic Networks. Mathematics and Computers in Simulation, 21, p. 376-384.

[12] WEISS, G. 1986. Stochastic Bounds on Distributions of Optimal Value Functions with Applications to

pert, Network Flows and Reliability. Operations Research 34, 595-605.

32

DISTRIBUTION LIST

Library (Code 0142)
Naval Postgraduate School
Monterey, CA 93943-5000

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Office of Research Administration (Code 012)
Naval Postgraduate School
Monterey, CA 93943-5000

Center for Naval Analyses
4401 Ford Avenue
Alexandria, VA 22302-0268

Library (Code 55)
Naval Postgraduate School
Monterey, CA 93943-5000

Operations Research Center, Rm E40-164
Massachusetts Institute of Technology
Attn: R. C. Larson and J. F. Shapiro
Cambridge, MA 02139

Koh Peng Kong
OA Branch, DSO
Ministry of Defense
Blk 29 Middlesex Road
SINGAPORE 1024

Institute for Defense Analysis
1800 North Beauregard
Alexandria, VA 22311

Arthur P. Hurter, Jr.
Professor and Chairman
Dept. of Industrial Engineering

and Management Sciences
Northwestern University
Evanston, IL 60201-9990

Professor H. G. Daellenbach
Dept. of Operations Research
University of Canterubry
Christchurch, NEW ZEALAND

33

NO. OF COPIES

2

2

1

Department of Operations Research, Code 55
Naval Postgraduate School
Monterey, CA 93943-5000

Michael Page Bailey, Code 55Ba
Naval Postgraduate School
Monterey, CA 93943-5000

V. G. Kulkarni
Department of Operations Research
The University of North Carolina at Chapel Hill
Chapel Hill, NC 27599

J. George Shantikuman
The Management Science Group
School of Business Administration
University of California at Berkeley
Berkeley, CA 93720

34

5

20

1

1

'"""lll ~~~~~~~~~~~~mlll~irllm~,]'""'''~''l 3 2768 00327568 6

________ c.-

